

Domain Discovery (DD) API’s Documentation

Domain Discovery is the process of acquiring, understanding and exploring data for a specific domain. Some example domains include human trafficking, illegal sale of weapons and micro-cap fraud. While acquiring knowledge about a domain humans usually start with a conception of that domain. This conception is based on prior knowledge of parts of the domain. The process of gaining a more complete knowledge of the domain involves using this prior knowledge to obtain content that provides additional information about that domain that was previously unknown. This new knowledge of the domain now becomes prior knowledge leading to an iterative process of domain discovery as illustrated in Figure 2. The goals of this iterative domain discovery process are:

	complete the human’s knowledge of the domain

	acquire sufficient content that captures the human coginition of the domain to translate into a computational model

[image: alternate text]
The Domain Discovery API formalizes the human domain discovery process by defining a set of operations that capture the essential tasks that lead to domain discovery on the Web as we have discovered in interacting with the Subject Matter Experts (SME)s. The API facilitates:

	Creation of different user interfaces to satisfy different DD needs

	Configure and understand different DD workflows

	Scripting DD

Contents

	Installation

	DD API Operations
	Acquire Content

	Annotate Content

	Summarize Content

	Organize Content

	Filter Content

	Generate Model

Links

	GitHub repository [https://github.com/ViDA-NYU/domain_discovery_API]

Indices and tables

	Index

	Module Index

	Search Page

Installation

Building and deploying the Domain Discovery can be done using its Makefile to create a local development environment. The conda build environment is currently only supported on 64-bit OS X and Linux.

First install conda, either through the Anaconda or miniconda installers provided by Continuum. You will also need Git, a Java Development Kit and Maven. These are system tools that are generally not provided by conda.

Clone the DD API repository and enter it:

>>> git clone https://github.com/ViDA-NYU/domain_discovery_API
>>> cd domain_discovery_API

Use the make command to build DD API and download/install its dependencies.

>>> make

Now you can use the API

DD API Operations

	
models.domain_discovery_model.random() → x in the interval [0, 1).

	

Acquire Content

	
class models.domain_discovery_model.DomainModel

	
	
queryWeb(terms, max_url_count=100, session=None)

	Issue query on the web: results are stored in elastic search, nothing returned here.

	Parameters:

	terms (string): Search query string
max_url_count (int): Number of pages to query. Maximum allowed = 100
session (json): should have domainId

	Returns:

	None

	
uploadUrls(urls_str, session)

	Download pages corresponding to already known set of domain URLs

	Parameters:

	urls_str (string): Space separated list of URLs
session (json): should have domainId

	Returns:

	number of pages downloaded (int)

	
getForwardLinks(urls, session)

	The content can be extended by crawling the given pages one level forward. The assumption here is that a relevant page will contain links to other relevant pages.

	Parameters:

	urls (list): list of urls to crawl forward
session (json): should have domainId

	Return:

	None (Results are downloaded into elasticsearch)

	
getBackwardLinks(urls, session)

	The content can be extended by crawling the given pages one level back to the pages that link to them. The assumption here is that a page containing the link to the given relevant page will contain links to other relevant pages.

	Parameters:

	urls (list): list of urls to crawl backward
session (json): should have domainId

	Return:

	None (Results are downloaded into elasticsearch)

Annotate Content

	
class models.domain_discovery_model.DomainModel

	
	
setPagesTag(pages, tag, applyTagFlag, session)

	Tag the pages with the given tag which can be a custom tag or ‘Relevant’/’Irrelevant’ which indicate relevance or irrelevance to the domain of interest. Tags help in clustering and categorizing the pages. They also help build computational models of the domain.

	Parameters:

	pages (urls): list of urls to apply tag
tag (string): custom tag, ‘Relevant’, ‘Irrelevant’
applyTagFlag (bool): True - Add tag, False - Remove tag
session (json): Should contain domainId

	Returns:

	Returns string “Completed Process”

	
setTermsTag(terms, tag, applyTagFlag, session)

	Tag the terms as ‘Positive’/’Negative’ which indicate relevance or irrelevance to the domain of interest. Tags help in reranking terms to show the ones relevan to the domain.

	Parameters:

	terms (string): list of terms to apply tag
tag (string): ‘Positive’ or ‘Negative’
applyTagFlag (bool): True - Add tag, False - Remove tag
session (json): Should contain domainId

	Returns:

	None

Summarize Content

	
class models.domain_discovery_model.DomainModel

	
	
extractTerms(opt_maxNumberOfTerms=40, session=None)

	Extract most relevant unigrams, bigrams and trigrams that summarize the pages.
These could provide unknown information about the domain. This in turn could
suggest further queries for searching content.

	Parameters:

	opt_maxNumberOfTerms (int): Number of terms to return

session (json): should have domainId

	Returns:

	array: [[term, frequencyInRelevantPages, frequencyInIrrelevantPages, tags], ...]

	
make_topic_model(session, tokenizer, vectorizer, model, ntopics)

	Build topic model from the corpus of the supplied DDT domain.

The topic model is represented as a topik.TopikProject object, and is
persisted in disk, recording the model parameters and the location of the
data. The output of the topic model itself is stored in Elasticsearch.

Parameters:

domain (str): DDT domain name as stored in Elasticsearch, so lowercase and with underscores in place of spaces.

tokenizer (str): A tokenizer from topik.tokenizer.registered_tokenizers

vectorizer (str): A vectorization method from topik.vectorizers.registered_vectorizers

model (str): A topic model from topik.vectorizers.registered_models

ntopics (int): The number of topics to be used when modeling the corpus.

Returns:

model: topik model, encoding things like term frequencies, etc.

Organize Content

	
class models.domain_discovery_model.DomainModel

	
	
getPagesProjection(session)

	Organize content by some criteria such as relevance, similarity or category which allows to easily analyze groups of pages. The ‘x’,’y’ co-ordinates returned project the page in 2D maintaining clustering based on the projection chosen. The projection criteria is specified in the session object

	Parameters:

	session: Should Contain ‘domainId’ Should contain ‘activeProjectionAlg’ which takes values ‘tsne’, ‘pca’ or ‘kmeans’ currently

	Returns dictionary in the format:{ ‘last_downloaded_url_epoch’: 1432310403 (in seconds) ‘pages’: [[url1, x, y, tags, retrieved], (tags are a list, potentially empty) [url2, x, y, tags, retrieved], [url3, x, y, tags, retrieved],

] }

Filter Content

	
class models.domain_discovery_model.DomainModel

	
	
getPages(session)

	Find pages that satisfy the specified criteria. One or more of the following criteria are specified
in the session object as ‘pageRetrievalCriteria’:

‘Most Recent’, ‘More like’, ‘Queries’, ‘Tags’, ‘Model Tags’, ‘Maybe relevant’, ‘Maybe irrelevant’, ‘Unsure’

and filter by keywords specified in the session object as ‘filter’

	Parameters:

	session (json): Should contain ‘domainId’,’pageRetrievalCriteria’ or ‘filter’

	Returns:

	json: {url1: {snippet, image_url, title, tags, retrieved}} (tags are a list, potentially empty)

Generate Model

	
class models.domain_discovery_model.DomainModel

	
	
createModel(session, zip=True)

	Create an ACHE model to be applied to SeedFinder and focused crawler.
It saves the classifiers, features, the training data in the <project>/data/<domain> directory.
If zip=True all generated files and folders are zipped into a file.

	Parameters:

	session (json): should have domainId

	Returns:

	None

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 models	

 	
 	
 models.domain_discovery_model	

Index

 C
 | D
 | E
 | G
 | M
 | Q
 | R
 | S
 | U

C

 	
 	createModel() (models.domain_discovery_model.DomainModel method)

D

 	
 	DomainModel (class in models.domain_discovery_model), [1], [2], [3], [4], [5]

E

 	
 	extractTerms() (models.domain_discovery_model.DomainModel method)

G

 	
 	getBackwardLinks() (models.domain_discovery_model.DomainModel method)

 	getForwardLinks() (models.domain_discovery_model.DomainModel method)

 	
 	getPages() (models.domain_discovery_model.DomainModel method)

 	getPagesProjection() (models.domain_discovery_model.DomainModel method)

M

 	
 	make_topic_model() (models.domain_discovery_model.DomainModel method)

 	
 	models.domain_discovery_model (module)

Q

 	
 	queryWeb() (models.domain_discovery_model.DomainModel method)

R

 	
 	random() (in module models.domain_discovery_model)

S

 	
 	setPagesTag() (models.domain_discovery_model.DomainModel method)

 	
 	setTermsTag() (models.domain_discovery_model.DomainModel method)

U

 	
 	uploadUrls() (models.domain_discovery_model.DomainModel method)

 nav.xhtml

 Table of Contents

 		Domain Discovery (DD) API's Documentation

 		Installation

 		DD API Operations

 		Acquire Content

 		Annotate Content

 		Summarize Content

 		Organize Content

 		Filter Content

 		Generate Model

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_static/down-pressed.png

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_images/ddt_arch-new.png
Domain
Knowledge

Domain Expert

DOMAIN DISCOVERY

Focused Crawler

Web Web Page
Search)"| Content An:

Computational
sis Model

Domain
Content
Index.

Domain Exploration and Translation(DDT)

_static/minus.png

_static/file.png

